在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.
如图,在Rt△ABC中,∠ACB=900,AC=,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T。 (1)求证:点E到AC的距离为一常数; (2)若AD=,当a=2时,求T的值; (3)若点D运动到AC的中点处,请用含a的代数式表示T。
某公司营销A,B两种产品,根据市场调研,发现如下信息: 信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系。 当x=1时,y=1.4;当x=3时,y=3.6。 信息2:销售B种产品所获利润y(万元)与所售产品x(吨)之间存在正比例函数关系。 根据以上信息,解答下列问题: (1)求二次函数解析式; (2)该公司准备购进A,B两种产品共10吨,请设计一个营销方案,使销售A,B两种产品获得的利润之和最大,最大利润是多少?
如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=2∠B,⊙O的切线AP与OC的延长线相交于点P。若,求AC的长。
如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE。 求证:四边形BCDE是矩形。
若关于x的不等式组恰有三个整数解,求实数a的取值范围。