如图多面体PQABCD由各棱长均为2的正四面体和正四棱锥拼接而成(Ⅰ)证明PQ⊥BC;(Ⅱ)若M为棱CQ上的点且, 求的取值范围,使得二面角P-AD-M为钝二面角。
如图,在三棱锥中,点分别是棱的中点. (1)求证://平面; (2)若平面平面,,求证:.
在△ABC中,角A,B,C的对边分别为,,,且. (1)求角的值; (2)若角,边上的中线=,求的面积.
设数列的前项和为,对一切,点都在函数的图象上 (1)求归纳数列的通项公式(不必证明); (2)将数列依次按1项、2项、3项、4项循环地分为(),,,;,,,;,….., 分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为, 求的值; (3)设为数列的前项积,若不等式对一切都成立,其中,求的取值范围
设数列为等差数列,且,数列的前项和为, (1)求数列的通项公式; (2)若,求数列的前项和.
已知三个内角,,的对边分别为,,,且, (1)求角 (2)若=,的面积为,求的周长.