如图,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=,将△OAB绕着原点O逆时针旋转90°,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180°,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2.(1)求抛物线的解析式.(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标.(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由.
小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?
下面图①、图②是某校调查部分学生是否知道母亲生日情况的扇形和条形统计图: 根据上图信息,解答下列问题: (1)本次共调查了 名学生,扇形统计图中“知道”所占的百分数是 ,并补全条形统计图; (2)若全校共有3000名学生,请你估计这所学校有多少名学生知道母亲的生日?
在一个不透明的盒子中,共有“一白三黑”个围棋子,它们除了颜色之外没有其它区别.(1)随机地从盒中提出子,则提出白子的概率是多少?(2)随机地从盒中提出子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.
如图,E是BC的中点,∠1=∠2,AE=DE。求证:AB=DC
先化简,再求值: ,其中.