下面图①、图②是某校调查部分学生是否知道母亲生日情况的扇形和条形统计图: 根据上图信息,解答下列问题: (1)本次共调查了 名学生,扇形统计图中“知道”所占的百分数是 ,并补全条形统计图; (2)若全校共有3000名学生,请你估计这所学校有多少名学生知道母亲的生日?
如图,若是正数,直线与轴交于点;直线与轴交于点;抛物线的顶点为,且与轴右交点为.
(1)若,求的值,并求此时的对称轴与的交点坐标;
(2)当点在下方时,求点与距离的最大值;
(3)设,点,,,,,分别在,和上,且是,的平均数,求点,与点间的距离;
(4)在和所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出和时“美点”的个数.
如图1和2,中,,,.点为延长线上一点,过点作切于点,设.
(1)如图1,为何值时,圆心落在上?若此时交于点,直接指出与的位置关系;
(2)当时,如图2,与交于点,求的度数,并通过计算比较弦与劣弧长度的大小;
(3)当与线段只有一个公共点时,直接写出的取值范围.
长为的春游队伍,以的速度向东行进,如图1和图2,当队伍排尾行进到位置时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为,当甲返回排尾后,他及队伍均停止行进.设排尾从位置开始行进的时间为,排头与的距离为.
(1)当时,解答:
①求与的函数关系式(不写的取值范围);
②当甲赶到排头位置时,求的值;在甲从排头返回到排尾过程中,设甲与位置的距离为,求与的函数关系式(不写的取值范围)
(2)设甲这次往返队伍的总时间为,求与的函数关系式(不写的取值范围),并写出队伍在此过程中行进的路程.
如图,和中,,,,边与边交于点(不与点,重合),点,在异侧,为的内心.
(1)求证:;
(2)设,请用含的式子表示,并求的最大值;
(3)当时,的取值范围为,分别直接写出,的值.
某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知(一次拿到8元球).
(1)求这4个球价格的众数;
(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.
①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;
②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.
又拿
先拿