先化简,再求值: ,其中.
已知:如图,点A、B、C在同一直线上,AD∥CE,AD=AC,∠D=∠CAE.求证:DB=AE.
我们规定:形如 的函数叫做“奇特函数”.当时,“奇特函数”就是反比例函数.(1) 若矩形的两边长分别是2和3,当这两边长分别增加x和y后,得到的新矩形的面积为8 ,求y与x之间的函数关系式,并判断这个函数是否为“奇特函数”;(2) 如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A,C的坐标分别为(9,0)、(0,3).点D是OA的中点,连结OB,CD交于点E,“奇特函数”的图象经过B,E两点.① 求这个“奇特函数”的解析式;② 把反比例函数的图象向右平移6个单位,再向上平移 个单位就可得到①中所得“奇特函数”的图象.过线段BE中点M的一条直线l与这个“奇特函数”的图象交于P,Q两点,若以B、E、P、Q为顶点组成的四边形面积为,请直接写出点P的坐标.
将等腰Rt△ABC和等腰Rt△ADE按图1方式放置,∠A=90°, AD边与AB边重合, AB=2AD=4.将△ADE绕点A逆时针方向旋转一个角度α(0°≤α≤180°),BD的延长线交直线CE于点P.(1)如图2,BD与CE的数量关系是 , 位置关系是 ;(2)在旋转的过程中,当AD⊥BD时,求出CP的长; (3)在此旋转过程中,求点P运动的路线长.[
如图,抛物线经过A、C(0,4)两点,与x轴的另一交点是B.(1)求抛物线的解析式;(2)若点在第一象限的抛物线上,求点D关于直线BC的对称点的坐标;(3)在(2)的条件下,过点D作DE⊥BC于点E,反比例函数的图象经过点E,点在此反比例函数图象上,求的值.
阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为 ;参考小明解决问题的方法,完成下列问题:(2)图2是一个6×6的正方形网格(每个小正方形的边长为1) .①利用构图法在答题卡的图2中画出三边长分别为的格点△DEF; ②计算△DEF的面积为 .(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF.若, ,则六边形AQRDEF的面积为__________.