如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A.B两点(点A在点B左边),与y轴交于点C.(1)写出二次函数L1的开口方向、对称轴和顶点坐标;(2)研究二次函数L2:y=kx2﹣4kx+3k(k≠0).①写出二次函数L2与二次函数L1有关图象的两条相同的性质;②若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由.
如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA。 (1)试求∠DAE的度数。 (2)如果把第(1)题中“AB=AC”的条件去掉,其余条件不变,那么∠DAE的度数会改变吗?试说明理由。
如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米。 (1)这个梯子的顶端距地面有多高? (2)如果梯子的顶端下滑4米,那么梯子的底部在水平方向也滑动了4米吗?
如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:
已知:如图,在等腰中,,,, 垂足分别为点,,连接.试问四边形是等腰梯形吗?为什么?
如图,在四边形ABCD中,∠ABC=∠ADC=90,M、N分别是AC、BD的中点,猜一猜MN与BD的位置关系,并说明结论。