(本题共12分)一盒中放有的黑球和白球,其中黑球4个,白球5个.(Ⅰ)从盒中同时摸出两个球,求两球颜色恰好相同的概率;(Ⅱ)从盒中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.(Ⅲ)若取到白球则停止摸球,求取到第三次时停止摸球的概率
已知角的终边与单位圆交于点P(,). (I)写出、、值; (II)求的值.
在数列的前n项和。当时, (1)求数列的通项公式;试用n和表示 (2)若,证明: (3)当时,证明
在平面直角坐标系xOy中,已知三点A(-1,0),B(1,0),,以A、B为焦点的椭圆经过点C。 (I)求椭圆的方程; (II)设点D(0,1),是否存在不平行于x轴的直线与椭圆交于不同两点M、N,使?若存在,求出直线斜率的取值范围;若不存在,请说明理由: (III)对于y轴上的点P(0,n),存在不平行于x轴的直线与椭圆交于不同两点M、N,使,试求实数n的取值范围。
已知 (1)当x为何值时,取得最小值?证明你的结论; (2)设f(x)在[-1,1]上是单调函数,求a的取值范围。
在如图所示的多面体中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF//AC, (1)求证:平面BEF⊥平面DEF; (2)求二面角A—BF—E的大小。