(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的最大值.
已知点(x, y)是曲线C上任意一点,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程;定点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),直线与曲线C交于A、B两个不同点.(1)求曲线的方程;(2)求m的取值范围.
已知函数,.(1)求的最大值和最小值;(2)若不等式在上恒成立,求实数的取值范围.
由直线上的点A向圆引切线,切点为P,求的最小值.
已知A(3,2),B(-2,7),若与线段AB相交,求的取值范围.
(本小题满分12分)如图,某地有三家工厂,分别位于矩形ABCD的两个顶点A,B及CD的中点P处.AB=20km,BC=10km.为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A,B等距的一点O处,建造一个污水处理厂,并铺设三条排污管道AO,BO,PO.记铺设管道的总长度为ykm.(1)按下列要求建立函数关系式: (i)设(rad),将表示成的函数;(ii)设(km),将表示成的函数;(2)请你选用(1)中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短。