(本小题满分12分)如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为(,),记∠COA=α.(Ⅰ)求的值;(Ⅱ)求cos∠COB的值.
已知过函数f(x)=的图象上一点B(1,b)的切线的斜率为-3. (1)求a、b的值; (2)求A的取值范围,使不等式f(x)≤A-1987对于x∈[-1,4]恒成立; 令.是否存在一个实数t,使得当时,g(x)有最大值1?
讨论函数的单调性,并确定它在该区间上的最大值最小值.
设函数 (1)求导数; 并证明有两个不同的极值点; (2)若不等式成立,求的取值范围.
是否存在这样的k值,使函数在(1,2)上递减,在(2,-∞)上递增.
)设函数y=x3+ax2+bx+c的图象如图所示,且与y=0在原点相切,若函数的极小值为-4,(1)求a、b、c的值;(2)求函数的递减区间.