某中学共有学生2000名,各年级男、女生人数如下表:
(1)已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.求x的值;(2)用分层抽样的方法抽取48名学生,应在初三年级抽取多少名?(3)已知y 245 ,z 245,求初三年级中女生比男生多的概率.
(本小题共14分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.(Ⅰ)若点M是棱PC的中点,求证:PA // 平面BMQ;(Ⅱ)求证:平面PQB⊥平面PAD; (Ⅲ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值 .
(本小题共13分)在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc.(Ⅰ)求角A的大小;(Ⅱ)设函数,当取最大值时,判断△ABC的形状.
(本小题共14分)对于,定义一个如下数阵:其中对任意的,,当能整除时,;当不能整除时,.设.(Ⅰ)当时,试写出数阵并计算;(Ⅱ)若表示不超过的最大整数,求证:;(Ⅲ)若,,求证:.
(本小题共13分)已知椭圆的离心率为,且两个焦点和短轴的一个端点是一个等腰三角形的顶点.斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点.(Ⅰ)求椭圆的方程;(Ⅱ)求的取值范围;(Ⅲ)试用表示△的面积,并求面积的最大值.
(本小题共13分)已知函数.(Ⅰ)求函数在区间上的最小值;(Ⅱ)证明:对任意,都有成立.