(本小题共13分)已知向量,设函数.(Ⅰ)求函数在上的单调递增区间;(Ⅱ)在中,,,分别是角,,的对边,为锐角,若,,的面积为,求边的长.
设全集,,.(1)若,求,(∁);(2)若,求实数的取值范围.
设椭圆C:过点(0,4),离心率为(Ⅰ)求C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度.
已知抛物线y2=-x与直线y=k(x+1)交于A、B两点.(1)求证:OA⊥OB;(2)当DAOB的面积等于时,求k的值.
在直角坐标系中,为坐标原点,如果一个椭圆经过点P(3,),且以点F(2,0)为它的一个焦点.(1)求此椭圆的标准方程;(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.
在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.(1)求动点P的轨迹方程;(2)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.