将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为.(Ⅰ)求直线与圆相切的概率;(Ⅱ)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
已知函数.(1)当时,求函数在上的值域;(2)设,若存在,使得以为三边长的三角形不存在,求实数的取值范围.
函数(1)若函数在内没有极值点,求的取值范围;(2)若对任意的,不等式在上恒成立,求实数的取值范围.
己知集合, ,,若“”是“”的充分不必要条件,求的取值范围.
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和个黑球(为正整数).现从甲、乙两个盒内各任取2个球,若取出的4个球均为黑球的概率为,求(1)的值;(2)取出的4个球中黑球个数大于红球个数的概率.
已知抛物线的方程为,点在抛物线上.(1)求抛物线的方程;(2)过点作直线交抛物线于不同于的两点,若直线分别交直线于两点,求最小时直线的方程.