某培训班共有名学生,现将一次某学科考试成绩(单位:分)绘制成频率分布直方图,如图所示.其中落在内的频数为36.(1)请根据图中所给数据,求出a及的值;(2)从如图5组中按分层抽样的方法选取40名学生的成绩作为一个样本,求在第一组、第五组(从左到右)中分别抽取了几名学生的成绩?(3)在(2)抽取的样本中的第一与第五组中,随机抽取两名学生的成绩,求所取两名学生的平均分不低于70分的概率.
如图,在四棱锥中,侧棱底面,底面为矩形,,为的上一点,且,为PC的中点.(Ⅰ)求证:平面AEC;(Ⅱ)求二面角的余弦值.
已知双曲线,点、分别为双曲线的左、右焦点,动点在轴上方.(1)若点的坐标为是双曲线的一条渐近线上的点,求以、为焦点且经过点的椭圆的方程;(2)若∠,求△的外接圆的方程;(3)若在给定直线上任取一点,从点向(2)中圆引一条切线,切点为. 问是否存在一个定点,恒有?请说明理由.
设函数(1)当时,求的最大值;(2)令,以其图象上任意一点为切点的切线的斜率恒成立,求实数的取值范围;(3)当时,方程有唯一实数解,求正数的值.
如图1,在直角梯形中,,,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点,如图2.(1)求证:∥平面;(2)求证:平面;(3)求点到平面的距离. 图 图
已知数列{}满足,且(1)求证:数列{}是等差数列;(2)求数列{}的通项公式;(3)设数列{}的前项之和,求证:.