据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:(1)写出从药物释放开始,y与x之间的函数关系式级自变量的取值范围;(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?
已知: ΔABC 内接于 ⊙ O , AB 是 ⊙ O 的直径,作 EG ⊥ AB 于 H ,交 BC 于 F ,延长 GE 交直线 MC 于 D ,且 ∠ MCA = ∠ B ,求证:
(1) MC 是 ⊙ O 的切线;
(2) ΔDCF 是等腰三角形.
▱ ABCO 在平面直角坐标系中的位置如图所示,直线 y 1 = kx + b 与双曲线 y 2 = m x ( m > 0 ) 在第一象限的图象相交于 A 、 E 两点,且 A ( 3 , 4 ) , E 是 BC 的中点.
(1)连接 OE ,若 ΔABE 的面积为 S 1 , ΔOCE 的面积为 S 2 ,则 S 1 = S 2 (直接填“ > ”“ < ”或“ = ” ) ;
(2)求 y 1 和 y 2 的解析式;
(3)请直接写出当 x 取何值时 y 1 > y 2 .
西昌市教科知局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:
(1) 年抽取的调查人数最少; 年抽取的调查人数中男生、女生人数相等;
(2)求图2中“短跑”在扇形图中所占的圆心角 α 的度数;
(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?
(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?
在 ▱ ABCD 中, E 、 F 分别是 AD 、 BC 上的点,将平行四边形 ABCD 沿 EF 所在直线翻折,使点 B 与点 D 重合,且点 A 落在点 A ' 处.
(1)求证:△ A ' ED ≅ ΔCFD ;
(2)连接 BE ,若 ∠ EBF = 60 ° , EF = 3 ,求四边形 BFDE 的面积.
如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c 交 x 轴于 A 、 B 两点,交 y 轴于点 C ( 0 , − 4 3 ) , OA = 1 , OB = 4 ,直线 l 过点 A ,交 y 轴于点 D ,交抛物线于点 E ,且满足 tan ∠ OAD = 3 4 .
(1)求抛物线的解析式;
(2)动点 P 从点 B 出发,沿 x 轴正方向以每秒2个单位长度的速度向点 A 运动,动点 Q 从点 A 出发,沿射线 AE 以每秒1个单位长度的速度向点 E 运动,当点 P 运动到点 A 时,点 Q 也停止运动,设运动时间为 t 秒.
①在 P 、 Q 的运动过程中,是否存在某一时刻 t ,使得 ΔADC 与 ΔPQA 相似,若存在,求出 t 的值;若不存在,请说明理由.
②在 P 、 Q 的运动过程中,是否存在某一时刻 t ,使得 ΔAPQ 与 ΔCAQ 的面积之和最大?若存在,求出 t 的值;若不存在,请说明理由.