如图,我渔政310船在南海海面上沿正东方向匀速航行,在A地观测到我渔船C在东北方向上的我国某传统渔场.若渔政310船航向不变,航行半小时后到达B处,此时观测到我渔船C在北偏东30°方向上.问渔政310船再航行多久,离我渔船C的距离最近?(假设我渔船C捕鱼时移动距离忽略不计,结果不取近似值.)
已知抛物线 y = m x 2 和直线 y = − x + b 都经过点 M ( − 2 , 4 ) ,点 O 为坐标原点,点 P 为抛物线上的动点,直线 y = − x + b 与 x 轴、 y 轴分别交于 A 、 B 两点.
(1)求 m 、 b 的值;
(2)当 ΔPAM 是以 AM 为底边的等腰三角形时,求点 P 的坐标;
(3)满足(2)的条件时,求 sin ∠ BOP 的值.
如图,已知 AC 、 AD 是 ⊙ O 的两条割线, AC 与 ⊙ O 交于 B 、 C 两点, AD 过圆心 O 且与 ⊙ O 交于 E 、 D 两点, OB 平分 ∠ AOC .
(1)求证: ΔACD ∽ ΔABO ;
(2)过点 E 的切线交 AC 于 F ,若 EF / / OC , OC = 3 ,求 EF 的值. [ 提示: ( 2 + 1 ) ( 2 − 1 ) = 1 ]
一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.
(1)求该轮船在静水中的速度和水流速度;
(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?
九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:
编号
一
二
三
四
五
人数
a
15
20
10
b
已知前面两个小组的人数之比是 1 : 5 .
解答下列问题:
(1) a + b = .
(2)补全条形统计图:
(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)
如图,菱形 ABCD 中,作 BE ⊥ AD 、 CF ⊥ AB ,分别交 AD 、 AB 的延长线于点 E 、 F .
(1)求证: AE = BF ;
(2)若点 E 恰好是 AD 的中点, AB = 2 ,求 BD 的值.