如图,直线AB分别与两坐标轴交于点A(4,0).B(0,8),点C的坐标为(2,0).(1)求直线AB的解析式;(2)在线段AB上有一动点P.①过点P分别作x,y轴的垂线,垂足分别为点E,F,若矩形OEPF的面积为6,求点P的坐标.②连结CP,是否存在点P,使与相似,若存在,求出点P的坐标,若不存在,请说明理由.
如图,在△ABC中,AB=+1,AC=,BC=2,求△ABC三个内角的度数.
已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.
实数a、b在数轴上的位置如图所示,化简﹣(|a﹣b|﹣﹣),写出一个满足条件的a值,并求出此时代数式的值.
如图,在一棵树CD的10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?
如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点 C,若已知A点的坐标为A(﹣2,0). (1)求抛物线的解析式及B、C两点的坐标; (2)试判断△AOC与△COB是否相似?并说明理由; (3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.