如图所示,制作一种产品,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为l5℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时问x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?
直线y=kx+b交坐标轴于A(-2,0),B(0,3)两点,
求不等式kx+b>0的解集.
如图1,在平面直角坐标系中,第一象限内长方形ABCD , AB∥y轴,点A(1,1),点C(a, b), 满足. (1)求长方形ABCD的面积. (2)如图2,长方形ABCD以每秒1个单位长度的速度向右平移,同时点E从原点O出发沿x轴以每秒2 个单位长度的速度向右运动,设运动时间为t秒. ①当t=4时,直接写出三角形OAC的面积为_______. ② 若AC∥ED,求t 的值; (3)在平面直角坐标系中,对于点,我们把点叫做点的伴随点,已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得到点,,,…,. ①若点的坐标为(3,1),则点的坐标为,点的坐标为; ②若点的坐标为(,),对于任意的正整数,点均在轴上方,则,应满足的条件为.
直线EF、GH之间有一个直角三角形ABC,其中∠BAC = 90°,∠ABC =. (1)如图1,点A在直线EF上,B、C在直线GH上,若∠=60°,∠FAC =30°.求证:EF∥GH; (2)将三角形ABC如图2放置,直线EF∥GH,点C 、B分别在直线EF、GH上,且BC平分∠ABH,直线CD平分∠FCA交直线GH于D.在取不同数值时,∠BCD的大小是否发生变化?若不变求其值,若变化指出其变化范围.
小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块. (1)两种型号的地砖各采购了多少块? (2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?
如图所示的平面直角坐标系中, 将△ABC平移后得到△DEF.已知B点平移的对应点E点(0,-3)(A点与D点对应,C点与F点对应). (1)△ABC的面积为 ; (2)画出平移后的△DEF,并写出点D的坐标为,点F的坐标为; (3)若线段DF交y轴于P, 则点P的坐标为.