如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.求证:(1)△ADA′≌△CDE;(2)直线CE是线段AA′的垂直平分线.
如图6,在平面直角坐标系中,直线分别交轴、轴于点将绕点顺时针旋转90后得到.(1)求直线的解析式;(2)若直线与直线相交于点,求的面积.
如图5,在平行四边形中,平分交于点,平分交于点.求证:(1);(2)若,则判断四边形是什么特殊四边形,请证明你的结论.
先化简,再求值:,其中
解不等式组
如图12,把抛物线(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得到抛物线,抛物线与抛物线关于轴对称.点、、分别是抛物线、与轴的交点,、分别是抛物线、的顶点,线段交轴于点.(1)分别写出抛物线与的解析式;(2)设是抛物线上与、两点不重合的任意一点,点是点关于轴的对称点,试判断以、、、为顶点的四边形是什么特殊的四边形?说明你的理由.(3)在抛物线上是否存在点,使得,如果存在,求出点的坐标,如果不存在,请说明理由.