已知:圆C:x2+(y-a)2=a2(a>0),动点A在x轴上方,圆A与x轴相切,且与圆C外切于点M(1)若动点A的轨迹为曲线E,求曲线E的方程;(2)动点B也在x轴上方,且A,B分别在y轴两侧.圆B与x轴相切,且与圆C外切于点N.若圆A,圆C,圆B的半径成等比数列,求证:A,C,B三点共线;(3)在(2)的条件下,过A,B两点分别作曲线E的切线,两切线相交于点T,若的最小值为2,求直线AB的方程.
已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为. (Ⅰ)求的解析式;(Ⅱ)当,求的值域
,化简g(x)
若=,且. 求(1);(2)的值.
用五点法作出函数在一个周期上的图象
关于函数f(x)=4sin(2x+)(x∈R),有下列命题: ①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍; ②y=f(x)的表达式可改写为y=4cos(2x-); ③y=f(x)的图象关于点(-,0)对称; 其中正确的命题的序号是 (注:把正确的命题的序号都填上.)