已知:圆C:x2+(y-a)2=a2(a>0),动点A在x轴上方,圆A与x轴相切,且与圆C外切于点M(1)若动点A的轨迹为曲线E,求曲线E的方程;(2)动点B也在x轴上方,且A,B分别在y轴两侧.圆B与x轴相切,且与圆C外切于点N.若圆A,圆C,圆B的半径成等比数列,求证:A,C,B三点共线;(3)在(2)的条件下,过A,B两点分别作曲线E的切线,两切线相交于点T,若的最小值为2,求直线AB的方程.
设数列、 (1)求数列的通项公式; (2)对一切,证明:成立; (3)记数列、、
已知函数,其中e是自然数的底数,. (1)当时,解不等式; (2)当时,求整数k的所有值,使方程在[k,k+1]上有解; (3)若在[-1,1]上是单调增函数,求的取值范围.
如图,椭圆的中心在原点,焦点在轴上,分别是椭圆的左、右焦点,是椭圆短轴的一个端点,过的直线与椭圆交于两点,的面积为,的周长为. (1)求椭圆的方程; (2)设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.
心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则天后的存留量;若在天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存储量随时间变化的曲线恰为直线的一部分,其斜率为存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时此刻为“二次复习最佳时机点”. (1)若,求“二次最佳时机点”; (2)若出现了“二次复习最佳时机点”,求的取值范围.
如图,在直三棱柱中,,分别是的中点,且. (Ⅰ)求证:; (Ⅱ)求证:平面平面.