若,为的最小正周期,,且,则 .
已知角的顶点在坐标原点,始边写轴的正半轴重合,,角的终边与单位圆交点的横坐标是,角的终边与单位圆交点的纵坐标是 。
①三角形纸片内有1个点,连同三角形的顶点共4个点,其中任意三点都不共线,以这4个点为顶点作三角形,并把纸片剪成小三角形,可得小三角形个数为3个;②三角形纸片内有2个点,连同三角形的顶点共5个点,其中任意三点都不共线,以这5个点为顶点作三角形,并把纸片剪成小三角形,可得小三角形个数为5个,…………以此类推,三角形纸片内有2012个点,连同三角形的顶点共2015个点,其其中任意三点都不共线,以这些点为顶点作三角形,并把纸片剪成小三角形,则这样的小三角形个数为 个(用数字作答)
阅读右边的程序框图,运行相应的程序,则输出的值为 。
对于实数x,y,定义运算,已知,则下列运算结果为的序号为 。(填写所有正确结果的序号)①②③④⑤
①三角形纸片内有1个点,连同三角形的顶点共4个点,其中任意三点都不共线,以这4个点为顶点作三角形,并把纸片剪成小三角形,可得小三角形个数为3个;②三角形纸片内有2个点,连同三角形的顶点共5个点,其中任意三点都不共线,以这5个点为顶点作三角形,并把纸片剪成小三角形,可得小三角形个数为5个,……以此类推:三角形纸片内有15个点,连同三角形的顶点共18个点,若其中任意三点都不共线,以这些点为顶点作三角形,并把纸片剪成小三角形,则这样的小三角形个数为 个。(用数字作答)