如图,点D,E在△ABC的边BC上,连接AD,AE. ①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②③;①③②;②③①.(1)以上三个命题是真命题的为(直接作答) ;(2)请选择一个真命题进行证明(先写出所选命题,然后证明).
数学家鲁弗斯设计了一个仪器,它可以三等分一个角.如图所示,A、B、C、D分别固定在以O为公共端点的四根木条上,且OA=OB=OC=OD,E、F可以在中间的两根木条上滑动,AE=CE=BF=DF.求证:∠AOE=∠EOF=∠FOD.
已知:如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:△ABC≌△DEF.
有这样的一个定理:夹在两条平行线间的平行线段相等.下面经历探索与应用的过程. 探索: 已知:如图1,AD∥BC,AB∥CD.求证:AB=CD. 应用此定理进行证明求解. 应用一、已知:如图2,AD∥BC,AD<BC,AB=CD.求证:∠B=∠C; 应用二、已知:如图3,AD∥BC,AC⊥BD,AC=4,BD=3.求:AD与BC两条线段的和.
如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与 OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处(如图1). (1)若折叠后点D恰为AB的中点(如图2),则θ= ; (2)若θ=45°,四边形OABC的直角∠OCB沿直线l折叠后,点B落在点四边形OABC的边AB上的E处(如图3),求a的值.
如图,在△ABC中,AB=17,BC=16,BC边上的中线AD=15, (1)求AC; (2)若点P在边AC上移动,则BP的最小值是 .