某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配两种园艺造型共50个,摆放在迎宾大道两侧,已知搭配一个 A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个 B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个 A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?
已知:如图,以的边为直径的交边于点,且过 点的切线平分边. (1)求证:是的切线; (2)当满足什么条件时,以点、、、为顶点的四边形是平行四边形?请说明理由.
如图,已知反比例函数和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k)两点。 (1)求反比例函数的解析式; (2)如图,已知点A在第一象限,且同时在上述两个函数的图象上, 求点A的坐标; (3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由。
一个不透明的口袋中有三个小球,上面分别标有数字1,2,3,每个小球,除数字外其他都相同.甲先从袋中随机取出1个小球,记下数字后放回;乙再从袋中随机取出1个小球记下数字.用画树状图或列表的方法, (1)求取出的两个小球上的数字之和为3的概率; (2)求取出的两个小球上的数字之和大于4的概率.
已知关于的一元二次方程(为常数).求证:方程有两个不相等的实数根.
解下列方程: (1)2(x+2 )2 -8 = 0 (2)(x+3)2 + 3(x+3)-4 = 0