(本小题满分12分)如图所示为一个几何体的直观图、三视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示).(1)求四棱锥的体积;(2)证明:平面;(3)若为上的动点,求证:.
已知圆C经过,两点,且在y轴上截得的线段长为,半径小于5。(Ⅰ)求圆C的方程;(Ⅱ)若直线∥,且与圆C交于点,,求直线的方程。
如图组合体中,三棱柱的侧面是圆柱的轴截面,是圆柱底面圆周上不与重合一个点。(Ⅰ)求证:无论点如何运动,平面平面;(Ⅱ)当点是弧的中点时,求四棱锥与圆柱的体积比。
如图,在正四棱锥中,,点在棱上。(Ⅰ)问点在何处时,,并加以证明;(Ⅱ)求二面角的余弦值。
设函数=是奇函数,其中,,。(Ⅰ)求的值;(Ⅱ)判断并证明在上的单调性。
已知圆和直线,直线,都经过圆C外定点A(1,0).(Ⅰ)若直线与圆C相切,求直线的方程;(Ⅱ)若直线与圆C相交于P,Q两点,与交于N点,且线段PQ的中点为M,求证:为定值.