如图,在平面直角坐标系中,矩形OABC的顶点A(0,3)、C(-1,0).将矩形OABC绕原点O顺时针方向旋转90o,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线经过点C、M、N.解答下列问题:(1)求直线BB′的 函数解析式; (2)求抛物线的解析式; (3)在抛物线上求出使S△PB′′ C′=S矩形OABC的所有点P的坐标.
如图,AC⊥CB,垂足为C点,AC=CB=8cm,点Q是AC的中点,动点P由B点出发,沿射线BC方向匀速移动.点P的运动速度为2cm/s.设动点P运动的时间为ts.为方便说明,我们分别记三角形ABC面积为S,三角形PCQ的面积为S1,三角形PAQ的面积为S2,三角形ABP的面积为S3.(1)S3= cm2(用含t的代数式表示);(2)当点P运动几秒,S1=S,说明理由;(3)请你探索是否存在某一时刻,使得S1=S2=S3,若存在,求出t值,若不存在,说明理由.
如图,在数轴上的A1、A2、A3、A4…A20,这20个点所表示的数分别为a1、a2、a3、a4、…a20.若A1A2=A2A3=…=A19A20,且a3=20 ,=12.(1)求a1的值;(2)若=a2+a4,求x的值;(3)求a20的值.
已知面包店的面包一个8元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜16元”,小明说:“我买这些就好了,谢谢”,根据两人的对话,判断结账时小明买了多少个面包?
已知y1=-x+3,y2=2x-3. (1)当x取何值时,y1=y2; (2)当x取何值时,y1的值比y2的值的2倍大8; (3)先填表,后回答:根据所填表格,回答问题:随着x的值增大,、的值分别有怎样的变化?
某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位为元)表中星期六的盈亏数被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏多少?