有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式有意义的(x,y)出现的概率;(3)化简分式,并求使分式的值为整数的(x,y)出现的概率.
已知、互为相反数且,、互为倒数,的绝对值是最小的正整数, 求的值. (注:=) 解:∵、互为相反数且,∴__________,__________; 又∵、互为倒数,∴__________; 又∵的绝对值是最小的正整数, ∴__________,∴__________; ∴原式__________.
某餐厅中,一张桌子可坐6人,有以下两种摆放方式: (1)当有n张桌子时,两种摆放方式各能坐多少人? (2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?
解方程 (1) (2)
计算: (1) (2) (3) (4)
应用题 甲、乙两辆车在一条公路上匀速行驶,为了确定汽车的位置.我们用OX表示这条公路,原点O为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧:行程为零,表示汽车位于零千米处. (1)根据题意,填写下列表格;
(2)甲、乙两车能否相遇,如果相遇,求相遇时的时刻及在公路上的位置;如果不能相遇,请说明理由; (3)甲、乙汽车能否相距90km,如果能,求相距90 km的时刻及其位置;如不能,请说明理由.