以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是的切线,连接OQ. 求的大小;(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被截得的弦长
如图,AB、AC为⊙O的弦,连接CO、BO并延长分别交弦AB、AC于点E、F,∠B=∠C.求证:CE=BF.
如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD﹦6,AC﹦8,则⊙O的半径为 ,CE的长是 .
如图所示,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,求四边形ADBC的面积.
正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.(1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE﹣BE=AE.请你说明理由;(3)如图②,若点E在上.写出线段DE、BE、AE之间的等量关系.(不必证明)
如图,等边△ABC内接于⊙O,P是上任一点(点P不与点A、B重合),连AP、BP,过点C作CM∥BP交PA的延长线于点M.(1)填空:∠APC= 度,∠BPC= 度;(2)求证:△ACM≌△BCP;(3)若PA=1,PB=2,求梯形PBCM的面积.