如图一,AB是的直径,AC是弦,直线EF和相切与点C,,垂足为D.(1)求证;(2)如图二,若把直线EF向上移动,使得EF与相交于G,C两点(点C在点G的右侧),连结AC,AG,若题中其他条件不变,这时图中是否存在与相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.
因长期干旱,甲水库蓄水量降到了 正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速 供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉, 又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过 40h,乙水库停止供水.甲水库每个排泄闸的灌溉速度相 同,图中的折线表示甲水库蓄水量Q (万m3) 与时间t (h) 之间的函数关系. 求:(1)线段BC的函数表达式; (2)乙水库供水速度和甲水库一个排灌闸的灌溉速度; (3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?
已知∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C. (1)⊙P移动到与边OB相切时(如图),切点为D,求劣弧的长; (2)⊙P移动到与边OB相交于点E,F,若EF=4cm,求OC的长;
如图,抛物线y=x2-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上. (1)求a的值; (2)求A,B的坐标; (3)以AC,CB为一组邻边作□ACBD,则点D关于x轴的对称点D′ 是否在该抛物线上?请说明理由.
如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一知输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏东49°方向,B位于南偏西41°方向. (1)线段BQ与PQ是否相等?请说明理由; (2)求A,B间的距离.(参考数据cos41°=0.75)
一枚棋子放在边长为1个单位长度的正六边形 ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在 一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀 后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1 个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位 长度. 棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法 求解)