甲乙两人进行象棋比赛,规定:每次胜者得1分,负者得0分;当其中一人的得分比另一人的得分多2分时则赢得这场比赛,此时比赛结束;同时规定比赛的次数最多不超过6次,即经6次比赛,得分多者赢得比赛,得分相等为和局。已知每次比赛甲获胜的概率为,乙获胜的概率为,假定各次比赛相互独立,比赛经ξ次结束,求:(1)ξ=2的概率;(2)随机变量ξ的分布列及数学期望。
已知数列{}的前项和为 (1)求证:数列是等比数列; (2)设数列{}的前项和为,求。
已知向量. (1)求的增区间; (2)已知△ ABC内接于半径为6的圆,内角A、B、C的对边分别 为,若,求边长
已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.(1)证明:⊥平面(2)求平面与平面所成角的余弦值;
在数列中,,. (1)求的通项公式; (2)令,求数列的前项和.
已知函数, 其中,其中若相邻两对称轴间的距离不小于 (1)求的取值范围; (2)在中,、、分别是角A、B、C的对边,,当最大时,求的面积.