如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
求下列各式中的(每题5分) (1)(2)
如图,等腰梯形ABCD中,AD∥BC,点E是线段AD上的一个动点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点. (1)试探索四边形EGFH的形状,并说明理由. (2)当点E运动到什么位置时,四边形EGFH是菱形?并加以证明. (3)若(2)中的菱形EGFH是正方形,请探索线段EF与线段BC的关系,并证明你的结论.
阅读以下材料:观察下列等式,找找规律 ① ②; ③ (1)化简: (2)计算: ++ (3)计算: +++……+(n≥2)
如图,在中,是边上的一点,是的中点,过点作的平行线交的延长线于,且,连接. (1)求证:是的中点; (2)如果,试猜测四边形的形状,并证明你的结论.
王大伯几年前承办了甲、乙两片荒山,各栽100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如拆线统计图所示. (1)分别计算甲、乙两山样本的平均数,并估算出甲乙两山杨梅的产量总和; (2)试通过计算说明,哪个山上的杨梅产量较稳定?