如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,)
已知:,,平分.求:的度数.
如图, 已知为直线上一点, 过点向直线上方引三条射线、、,且平分,,,求:的度数.
如图,已知O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB平分线,求∠DOE的度数.
如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD.
(1)如图所示,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数.(4)从(1)(2)(3)的结果你能看出什么规律?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计一道以线段为背景的计算题,并写出其中的规律来?