设,函数(Ⅰ)若是函数的极值点,求实数的值;(Ⅱ)若函数在上是单调减函数,求实数的取值范围.
设等差数列的公差为d,前n项和为,等比数列的公比为q.已知,,,. (Ⅰ)求数列,的通项公式; (Ⅱ)当时,记,求数列的前n项和.
已知向量,,设函数. (Ⅰ)求函数的单调递增区间; (Ⅱ)在中,边分别是角的对边,角为锐角,若,,的面积为,求边的长.
设为实数,函数. (1)若,求的取值范围; (2)讨论的单调性; (3)当时,讨论在区间内的零点个数.
已知椭圆的一个焦点为,离心率为. (1)求椭圆的标准方程; (2)若动点为椭圆外一点,且点到椭圆的两条切线相互垂直,求点的轨迹方程.
设数列的前项和为,.已知,,,且当时,. (1)求的值; (2)证明:为等比数列; (3)求数列的通项公式.