某校从6名教师中,选派4名同时到3个边远地区支教,每个地区至少选派1名. (Ⅰ) 共有多少种不同的选派方法?(Ⅱ) 若6名教师中的甲,乙二位教师不能同时支教,共有多少种不同的选派方法?
已知函数,讨论的单调性.
已知曲线 在点 处的切线 平行直线,且点在第三象限. (1)求的坐标; (2)若直线 , 且 也过切点,求直线的方程.
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数). (1)求的极值; (2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
已知函数. (1)求函数的单调递减区间; (2)若,证明:.
已知为实数, (1)求导数; (2)若,求在[-2,2] 上的最大值和最小值; (3)若在和上都是递增的,求的取值范围.