已知是等差数列,其前n项和为,已知(1)求数列的通项公式; (2)设,证明是等比数列,并求其前n项和。
(本小题满分14分)设函数Z),曲线在点处的切线方程为。(1)求的解析式;(2)证明:函数的图象是一个中心对称图形,并求其对称中心;(3)证明:曲线上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值。
(本小题满分14分)如图所示,已知曲线交于点O、A,直线与曲线、分别交于点D、B,连结OD,DA,AB.(1)求证:曲边四边形ABOD(阴影部分:OB为抛物线弧)的面积的函数表达式为(2)求函数在区间上的最大值.
(本小题满分13分)甲、乙两人各射击一次,击中目标的概率分别是和,假设两个射击是否击中目标,相互之间没有影响;每人各次射击是否中目标相互之间也没有影响。(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则中止其射击。则乙恰好射击5次后被中止射击的概率是多少?
(本小题满分13分)设函数,已知是奇函数.(Ⅰ)求、的值; (Ⅱ)求的单调区间与极值.
(本小题满分13分)已知的展开式中第五项的系数与第三项的系数的比是10:1(1)求展开式中各项系数的和;(2)求展开式中含的项;