某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个小球,球上分别标有“0元”、 “10元”、“20元”和“30元”的字样.规定;顾客在本商场同一日内,每消费200元就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应金额的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到( )元购物券,至多可以得到( )元购物券(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率
2020年5月份,省城太原开展了“活力太原 · 乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高 50 % 后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.
(1)计算: ( - 4 ) 2 × ( - 1 2 ) 3 - ( - 4 + 1 ) .
(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.
x 2 - 9 x 2 + 6 x + 9 - 2 x + 1 2 x + 6
= ( x + 3 ) ( x - 3 ) ( x + 3 ) 2 - 2 x + 1 2 ( x + 3 ) … 第一步
= x - 3 x + 3 - 2 x + 1 2 ( x + 3 ) … 第二步
= 2 ( x - 3 ) 2 ( x + 3 ) - 2 x + 1 2 ( x + 3 ) … 第三步
= 2 x - 6 - ( 2 x + 1 ) 2 ( x + 3 ) … 第四步
= 2 x - 6 - 2 x + 1 2 ( x + 3 ) … 第五步
= - 5 2 x + 6 … 第六步
任务一:填空:
①以上化简步骤中,第 步是进行分式的通分,通分的依据是 .或填为: ;
②第 步开始出现错误,这一步错误的原因是 ;
任务二:请直接写出该分式化简后的正确结果;
任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.
问题提出
(1)如图1,在 Rt Δ ABC 中, ∠ ACB = 90 ° , AC > BC , ∠ ACB 的平分线交 AB 于点 D .过点 D 分别作 DE ⊥ AC , DF ⊥ BC .垂足分别为 E , F ,则图1中与线段 CE 相等的线段是 .
问题探究
(2)如图2, AB 是半圆 O 的直径, AB = 8 . P 是 AB ̂ 上一点,且 PB ̂ = 2 PA ̂ ,连接 AP , BP . ∠ APB 的平分线交 AB 于点 C ,过点 C 分别作 CE ⊥ AP , CF ⊥ BP ,垂足分别为 E , F ,求线段 CF 的长.
问题解决
(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知 ⊙ O 的直径 AB = 70 m ,点 C 在 ⊙ O 上,且 CA = CB . P 为 AB 上一点,连接 CP 并延长,交 ⊙ O 于点 D .连接 AD , BD .过点 P 分别作 PE ⊥ AD , PF ⊥ BD ,垂足分别为 E , F .按设计要求,四边形 PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设 AP 的长为 x ( m ) ,阴影部分的面积为 y ( m 2 ) .
①求 y 与 x 之间的函数关系式;
②按照“少儿活动中心”的设计要求,发现当 AP 的长度为 30 m 时,整体布局比较合理.试求当 AP = 30 m 时.室内活动区(四边形 PEDF ) 的面积.
如图,抛物线 y = x 2 + bx + c 经过点 ( 3 , 12 ) 和 ( - 2 , - 3 ) ,与两坐标轴的交点分别为 A , B , C ,它的对称轴为直线 l .
(1)求该抛物线的表达式;
(2) P 是该抛物线上的点,过点 P 作 l 的垂线,垂足为 D , E 是 l 上的点.要使以 P 、 D 、 E 为顶点的三角形与 ΔAOC 全等,求满足条件的点 P ,点 E 的坐标.
如图, ΔABC 是 ⊙ O 的内接三角形, ∠ BAC = 75 ° , ∠ ABC = 45 ° .连接 AO 并延长,交 ⊙ O 于点 D ,连接 BD .过点 C 作 ⊙ O 的切线,与 BA 的延长线相交于点 E .
(1)求证: AD / / EC ;
(2)若 AB = 12 ,求线段 EC 的长.