(本小题满分12分)已知椭圆C:的离心率为,且过点Q(1,).(1) 求椭圆C的方程; (2) 若过点M(2,0)的直线与椭圆C相交于A,B两点,设P点在直线上,且满足 (O为坐标原点),求实数t的最小值.
已知等比数列{an}满足:|a2-a3|=10,a1a2a3=125. (1)求数列{an}的通项公式; (2)是否存在正整数m,使得≥1?若存在,求m的最小值;若不存在,说明理由.
设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列. (1)求数列{an}的通项公式; (2)令bn=ln a3n+1,n=1,2,…,求数列{bn}的前n项和Tn.
设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列. (1)求数列{an}的公比; (2)证明:对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.
在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2cos B-sin(A-B)sin B+cos(A+C)=-. (1)求cos A的值; (2)若a=4,b=5,求向量在方向上的投影.
在△ABC中,内角A,B,C所对的边分别是a,b,c.已知bsin A=3csin B,a=3,cos B= (1)求b的值; (2)求sin 的值.