(本小题满分12分)已知椭圆C:的离心率为,且过点Q(1,).(1) 求椭圆C的方程; (2) 若过点M(2,0)的直线与椭圆C相交于A,B两点,设P点在直线上,且满足 (O为坐标原点),求实数t的最小值.
(本小题满分14分)已知0是坐标原点,,(I)的单调递增区间; (II)若f(x)的定义域为,值域为[2,5],求m的值。
本小题满分14分) 在△ABC中,角A,B,C所对的边分别为a,b,c,(I)求的值;(II)若的值.
、(本小题满分16分) 已知R,函数R,为自然对数的底数)。 (1)当时,求函数的单调递增区间; (2)若函数在上单调递增,求的取值范围; (3)函数是否为R上的单调函数,若是,求出的取值范围;若不是,请说明理由。
、(本小题满分14分) 设函数,其中实常数。(1)求函数的定义域和值域;(2)试探究函数的奇偶性与单调性,并证明你的结论。
、(本小题满分14分) 已知函数(1)画出函数在的简图;(2)写出函数的最小正周期和单调递增区间;并求:当x为何值时,函数有最大值?最大值是多少?(3)若x是△ABC的一个内角,且y2=1,试判断△ABC的形状。