先化简,后求值: ,其中
为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有 A , B 两种型号的挖掘机,已知3台 A 型和5台 B 型挖掘机同时施工一小时挖土165立方米;4台 A 型和7台 B 型挖掘机同时施工一小时挖土225立方米.每台 A 型挖掘机一小时的施工费用为300元,每台 B 型挖掘机一小时的施工费用为180元.
(1)分别求每台 A 型, B 型挖掘机一小时挖土多少立方米?
(2)若不同数量的 A 型和 B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?
如图, BD 为 ΔABC 外接圆 ⊙ O 的直径,且 ∠ BAE = ∠ C .
(1)求证: AE 与 ⊙ O 相切于点 A ;
(2)若 AE / / BC , BC = 2 7 , AC = 2 2 ,求 AD 的长.
为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区 n 户家庭的月用水量,绘制了下面不完整的统计图.
(1)求 n 并补全条形统计图;
(2)求这 n 户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;
(3)从月用水量为 5 m 3 和 9 m 3 的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为 5 m 3 和 9 m 3 恰好各有一户家庭的概率.
如图,点 M 是正方形 ABCD 边 CD 上一点,连接 AM ,作 DE ⊥ AM 于点 E , BF ⊥ AM 于点 F ,连接 BE .
(1)求证: AE = BF ;
(2)已知 AF = 2 ,四边形 ABED 的面积为24,求 ∠ EBF 的正弦值.
如图,抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 与 x 轴交于点 A ( − 4 , 0 ) , B ( 2 , 0 ) ,与 y 轴交于点 C ( 0 , 4 ) ,线段 BC 的中垂线与对称轴 l 交于点 D ,与 x 轴交于点 F ,与 BC 交于点 E ,对称轴 l 与 x 轴交于点 H .
(1)求抛物线的函数表达式;
(2)求点 D 的坐标;
(3)点 P 为 x 轴上一点, ⊙ P 与直线 BC 相切于点 Q ,与直线 DE 相切于点 R .求点 P 的坐标;
(4)点 M 为 x 轴上方抛物线上的点,在对称轴 l 上是否存在一点 N ,使得以点 D , P , M , N 为顶点的四边形是平行四边形?若存在,则直接写出 N 点坐标;若不存在,请说明理由.