(本题12分)投掷一个质地均匀,每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.(1)求点P落在区域上的概率;(2)若以落在区域上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M上的概率.
已知向量,,设函数. (1)求的最小正周期与单调递增区间; (2)在△中,、、分别是角、、的对边,若△的面积为,求的值.
等比数列{an}的各项均为正数,且。 (1)求数列的通项公式; (2)设,求数列的前项和.
已知函数的图象与轴 的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和. (1)求的解析式及的值;
(本小题满分15分)已知二次函数对都满足且,设函数 (,). (1)求的表达式; (2)若,使成立,求实数的取值范围; (3)设,,求证:对于,恒有.
(本小题满分12分)已知函数f(x)=2x-. (1)若f(x)=2,求x的值; (2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.