(本题10分)在直角坐标系中,角的顶点为坐标原点,始边在轴的正半轴上,当角的终边为射线:=3 (≥0)时, 求(1)的值; (2)的值.
用分析法证明:若,则.
画出解不等式()的程序框图.
甲乙两人进行掰手腕比赛,比赛规则规定三分钟为一局,三分钟内不分胜负为平局,当有一人赢3局就结束比赛,否则继续进行,根据以往经验,每次甲胜的概率为,乙胜的概率为,且每局比赛胜负互不受影响.(Ⅰ)求比赛4局乙胜的概率;(Ⅱ)求在2局比赛中甲的胜局数为ξ的分布列和数学期望;(Ⅲ)若规定赢一局得2分,平一局得1分,输一局得0分,比赛进行五局,积分有超过5分者比赛结束,否则继续进行,求甲得7分的概率.
甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.现从甲,乙两袋中各任取2个球.(Ⅰ)若n=3,求取到的4个球全是红球的概率;(Ⅱ)若取到的4个球中至少有2个红球的概率为,求n.
已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m﹣2)x+1=0无实根.若“p或q”为真,“p且q”为假.求实数m的取值范围.