某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。 求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?
如图,西园中学数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点的仰角为,再沿着的方向后退20m至处,测得古塔顶端点的仰角为,求该古塔BD的高度(,结果保留一位小数).
如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1). (1)作出与△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标; (2)以原点O为位似中心,在原点的另一侧画出△A2B2C2,使=,并写出点A2的坐标。
解方程:.
解不等式组:,并把不等式组解集在数轴上表示出来.
如图,在平面直角坐标系xOy中, 已知矩形ABCD的两个顶点B、C的坐标分别是B(1,0)、C(3,0).直线AC与y轴交于点G(0,6).动点P从点A出发,沿线段AB向点B运动.同时动点 Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E. (1)求直线AC的解析式; (2)当t为何值时,△CQE的面积最大?最大值为多少? (3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使得以C、Q、E、H为顶点的四边形是菱形?