已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)
在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀. (1)从中任取一球,求抽取的数字为正数的概率; (2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率; (3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.
如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F. (1)求证:四边形DBFE是平行四边形; (2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?
某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题: (1)此次调查的学生人数为 ; (2)条形统计图中存在错误的是 (填A、B、C中的一个),并在图中加以改正; (3)在图(2)中补画条形统计图中不完整的部分; (4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?
先化简,再求值:,其中a2+3a﹣1=0.
如图,在直角坐标系xOy中,一次函数y=﹣x+m(m为常数)的图象与x轴交于A(﹣3,0),与y轴交于点C.以直线x=﹣1为对称轴的抛物线y=ax+bx+c(a,b,c为常数,且a>0)经过A,C两点,与x轴正半轴交于点B. (1)求一次函数及抛物线的函数表达式. (2)在对称轴上是否存在一点P,使得△PBC的周长最小?若存在,请求出点P的坐标. (3)点D是线段OC上的一个动点(不与点O、点C重合),过点D作DE‖PC交x轴于点E,连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.