已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F ,使CF=CE,连结DF,交BE的延长线于点G,连结OG.⑴ 求证:△BCE≌△DCF;⑵ OG与BF有什么数量关系?证明你的结论;⑶ 若GE·GB=4-2,求 正方形ABCD的面积.
(1)解方程:x2-4x+1=0(配方法) (2)解不等式组:
计算:(1)sin60°-|-|--()-1(2)(1+)÷.
已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB.AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.
已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A.B两点(点A在点B的左侧),图象与y轴交于点C,点A.点B的横坐标是方程x2-4x-12=0的两个根.(1)求出该二次函数的表达式及顶点坐标;(2)如图,连接AC.BC,点P是线段OB上一个动点(点P不与点O、B重合),过点P作PQ∥AC交BC于点Q,当△CPQ的面积最大时,求点P的坐标.
某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:
问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)