(本小题满分10分).选修4-4:坐标系与参数方程已知某圆的极坐标方程是,求(1)求圆的普通方程和一个参数方程;(2)圆上所有点中的最大值和最小值.
已知函数,,,其中且. (I)求函数的导函数的最小值; (II)当时,求函数的单调区间及极值; (III)若对任意的,函数满足,求实数的取值范围.
当时,, (I)求; (II)猜想与的关系,并用数学归纳法证明.
统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:(≤120).已知甲、乙两地相距100千米。 (Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
如图,四棱锥中,底面为平行四边形,,,⊥底面. (1)证明:平面平面; (2)若二面角为,求与平面所成角的正弦值。
已知,证明:.