已知数列中,,,(1)求证:数列为等比数列。(2)设数列的前项和为,若,求正整数列的最小值。
已知向量与,其中.(1)问向量能平行吗?请说明理由;(2)若,求和的值;(3)在(2)的条件下,若,求的值.
知集合,集合.(1)当时,求;(2)若,求实数的取值范围;(3)若,求实数的取值范围.
(1)计算:;(2)已知,求下列各式的值:① ②.
在平面直角坐标系xOy中,已知圆:和圆:(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.
如图,在四棱锥中,是正方形,平面,,分别是的中点.(1)在线段上确定一点,使平面,并给出证明;(2)证明平面平面,并求出到平面的距离.