设函数(),.(Ⅰ)关于的不等式的解集中的整数恰有3个,求实数的取值范围;(Ⅱ)对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的“分界线”.设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
已知函数的部分图象如图所示.(1)求函数的解析式;(2)将函数的图象做怎样的平移变换可以得到函数的图象;(3)若方程上有两个不相等的实数根,求m的取值范围.
已知是函数图象的一条对称轴.(1)求a的值;(2)求函数的单调增区间;(3)作出函数在上的图象简图(列表,画图).
选修4一5:不等式选讲已知函数.(1)求关于的不等式的解集;(2)如果关于的不等式的解集不是空集,求实数的取值范围.
选修4一4:坐标系与参数方程在直角坐标系中,圆:=经过伸缩变换后得到曲线.以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为·(1)求曲线的直角坐标方程及直线的直角坐标方程;(2)在上求一点,使点到直线的距离最小,并求出最小距离.
选修4一1:几何证明选讲如图,是圆的直径,弦于点,是延长线上一点,切圆于,交于.(1)求证:为等腰三角形;(2)求线段的长.