(本小题满分10分)已知二次函数f (x) = x2 – 16x + p + 3. (1)若函数在区间上存在零点,求实数p的取值范围;(2)问是否存在常数q(q≥0),当x∈[q,10]时,的值域为区间,且的长度为12 – q.(注:区间[a,b](a<b)的长度为b – a)
已知点F(1,0),直线l:x=2.设动点P到直线l的距离为d,且|PF|=d,≤d≤.(1)求动点P的轨迹方程;(2)若·=,求向量与的夹角.
如图,某农场在P处有一堆肥,今要把这堆肥料沿道路PA或PB送到庄稼地ABCD中去,已知PA="100" m,PB="150" m,∠APB=60°.能否在田地ABCD中确定一条界线,使位于界线一侧的点,沿道路PA送肥较近;而另一侧的点,沿道路PB送肥较近?如果能,请说出这条界线是一条什么曲线,并求出其方程.
设F1、F2是双曲线x2-y2=4的左、右两个焦点,P是双曲线上任意一点,过F1作∠F1PF2的平分线的垂线,垂足为M,求点M的轨迹方程.
设椭圆+=1(a>b>0)的左焦点为F1(-2,0),左准线l1与x轴交于点N(-3,0),过点N且倾斜角为30°的直线l交椭圆于A、B两点.(1)求直线l和椭圆的方程;(2)求证:点F1(-2,0)在以线段AB为直径的圆上.
设点A(-2,),椭圆+ =1的右焦点为F,点P在椭圆上移动.当|PA|+2|PF|取最小值时,P点的坐标是多少?