如图1,在□ABCD中,AE⊥BC于E,E恰为BC的中点,.(1)求证:AD=AE; (2)如图2,点P在BE上,作EF⊥DP于点F,连结AF. 求证:;(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF⊥DP于点F,连结AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.
如图1,在平面直角坐标系中,直线与直线相交于点,点是直线上的动点,过点作于点,点的坐标为,连接,.设点的纵坐标为,的面积为.
(1)当时,请直接写出点的坐标;
(2)关于的函数解析式为,其图象如图2所示,结合图1、2的信息,求出与的值;
(3)在上是否存在点,使得是直角三角形?若存在,请求出此时点的坐标和的面积;若不存在,请说明理由.
如图,在中,以为直径的交于点,连接,且,连接并延长交的延长线于点,与相切于点.
(1)求证:是的切线;
(2)连接交于点,求证:;
(3)若,求的值.
倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出型和型两款垃圾分拣机器人,已知2台型机器人和5台型机器人同时工作共分拣垃圾3.6吨,3台型机器人和2台型机器人同时工作共分拣垃圾8吨.
(1)1台型机器人和1台型机器人每小时各分拣垃圾多少吨?
(2)某垃圾处理厂计划向机器人公司购进一批型和型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20吨.设购买型机器人台,型机器人台,请用含的代数式表示;
(3)机器人公司的报价如下表:
型号
原价
购买数量少于30台
购买数量不少于30台
型
20万元台
原价购买
打九折
12万元台
打八折
在(2)的条件下,设购买总费用为万元,问如何购买使得总费用最少?请说明理由.
如图,一艘渔船位于小岛的北偏东方向,距离小岛的点处,它沿着点的南偏东的方向航行.
(1)渔船航行多远距离小岛最近(结果保留根号)?
(2)渔船到达距离小岛最近点后,按原航向继续航行到点处时突然发生事故,渔船马上向小岛上的救援队求救,问救援队从处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?
小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用表示,单位:分),收集数据如下:
90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100
整理数据:
3
4
8
分析数据:
平均分
中位数
众数
92
根据以上信息,解答下列问题:
(1)直接写出上述表格中,,的值;
(2)该校有1600名家长参加了此次问卷测评活动,请估计成绩不低于90分的人数是多少?
(3)请从中位数和众数中选择一个量,结合本题解释它的意义.