如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=-2相交于点D,点A是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A的纵坐标为t,ΔABC的面积为s.
(1)当t=2时,请直接写出点B的坐标;
(2)s关于t的函数解析式为s=14t2+bt-54,t-1或t5at+1t-5,-1<t<5,其图象如图2所示,结合图1、2的信息,求出a与b的值;
(3)在l2上是否存在点A,使得ΔABC是直角三角形?若存在,请求出此时点A的坐标和ΔABC的面积;若不存在,请说明理由.
如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点, 且点A的横坐标和点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)△AOB的面积.
一定质量的氧气,它的密度P(kg/m3)是它的体积V( m3) 的反比例函数, 当V=10m3时,p=1.43kg/m3. (1)求p与V的函数关系式;(2)求当V=2m3时求氧气的密度p.
如图,的锐角顶点是直线与双曲线在第一象限的交点,且,(1)求m的值(2)求的值
在以坐标轴为渐近线的双曲线上,有一点P(m,n),它的坐标是方程的两个根,求双曲线的函数解析式。
一定质量的二氧化碳,当它的体积时,它的密度(1)求与V的函数关系式;(2)求当时二氧化碳的密度。