如图,直三棱柱 A B C - A ` B ` C ` , ∠ B A C = 90 ° , A B = A C = 2 , A A ` = 1 ,点 A ` B 和 B ` C ` 的中点。
(Ⅰ)证明: M N ∥ 平面 A ` A C C ` ; (Ⅱ)求三棱锥 A ` - M N C 的体积。(锥体体积公式 V - 1 3 S h ,其中 S 为底面面积, h 为高).
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表: 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为. (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由. 下面的临界值表供参考: (参考公式:,其中)
(本小题满分13分)已知函数在处取得极值. (Ⅰ)求实数的值; (Ⅱ)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围; (Ⅲ)证明:对任意的正整数,不等式都成立.
(本小题满分13分) 已知椭圆E中心在原点,一个焦点为,离心率 (Ⅰ)求椭圆E的方程; (Ⅱ)是长为的椭圆E动弦,为坐标原点,求面积的最大值与最小值
(本小题满分13分) 某生产流水线由于改进了设备,预计改进后第一年年产量的增长率为,以后每年的增长率是前一年的一半,设原来的产量是 (Ⅰ) 写出改进设备后的第一年、第二年、第三年的产量,并写出第年与第年的产量之间的关系式; (Ⅱ) 由于设备不断老化,估计每年将损失年产量的,如此下去,以后每年的产量是否始终是逐年提高?若是,请给予证明;若不是,请说明从第几年起,产量将比上一年减少?
(本小题满分12分)已知分别在射线(不含端点)上运动,,在中,角、、所对的边分别是、、. (Ⅰ)若、、依次成等差数列,且公差为2.求的值; (Ⅱ)若,,试用表示的周长,并求周长的最大值.