(本小题满分12分)已知函数.(1)求函数的最小正周期及单调递增区间; (2)的内角的对边长分别为,若 且试判断的形状,并说明理由.
(本小题满分12分)已知函数,(1)若时,在其定义域内单调递增,求的取值范围;(2)设函数的图象与函数的图象交于,两点,过线段的中点作轴的垂线分别交、于点,,问是否存在点,使在处的切线与在处的切线平行?若存在,求的横坐标,若不存在,请说明理由。
(本小题满分12分)设圆C:,此圆与抛物线有四个不同的交点,若在轴上方的两交点分别为,,坐标原点为,的面积为。(1)求实数的取值范围;(2)求关于的函数的表达式及的取值范围。
(本小题满分12分)在三棱锥中,是边长为4的正三角形,,,、分别是、的中点; (1)证明:平面平面; (2)求直线与平面所成角的正弦值。
(本小题满分12分)已知为坐标原点,向量,,点是直线上一点,且;(1)设函数, ,讨论的单调性,并求其值域;(2)若点、、共线,求的值。
(本小题满分12分)某班从6名班干部中(男生4人,女生2人)选3人参加学校义务劳动;(1)求男生甲或女生乙被选中的概率;(2)在男生甲被选中的情况下,求女生乙也被选中的概率;(3)设所选3人中女生人数为,求的分布列及数学期望。