(本小题满分12分)已知向量=(sinB,1-cosB),且与向量(2,0)所成角为,其中A, B, C是⊿ABC的内角.(1)求角B的大小; (2)求sinA+sinC的取值范围.
(本小题满分14分)如图,在半径为R、圆心角为的扇形金属材料中剪出一个长方形EPQF,并且EP与∠AOB的平分线OC平行,设∠POC=θ.(1)将θ表示为长方形EPQF的面积S(θ)的函数(2)现用EP和FQ作为母线并焊接起来,将长方形EPQF制成圆柱的侧面,能否从△OEF中直接剪出一个圆面作为圆柱形容器的底面?如果不能,请说明理由;如果能,求出侧面积最大时圆柱形容器的体积.
(本小题满分14分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点。(1)求证:AC⊥DE;(2)若PB与平面ABCD所成角为450,E是PB上的中点。求三棱锥P-AED的体积.
(本小题满分14分)在ABC中角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC(1)求角B的大小;(2设向量m= (sinA,cos2A),n=(k,1),且mn>1恒成立,求k的取值范围.
已知f(x)是定义在[-1,1]上的奇函数,当x∈[-1,0]时的解析式为f(x)=-(a∈R).(1)写出f(x)在(0,1]上的解析式;(2)求f(x)在(0,1]上的最大值.
已知9x-10·3x+9≤0,求函数y=x-1-4x+2的最大值和最小值